
Lecture 4: Equisingularity and ICIS

by Terence Gaffney

I Welcome to Equisingularity!

I Please read the notes for lecture 4. They will be used in the course
on Determinantal singularities.

I Please do all the exercises in the notes. Whenever you are trying to
understand a definition, make up an easy problem and solve it, if
there isn’t one already. We will have an exercise session next week.

I I encourage you to talk to me at any time during the school if you
have any questions.



I Introduction and Some Basic Examples

I To understand a singularity X we want to understand the “nearby”
singularities–the singularities that appear in the deformations of X .

I Given a family of sets or maps, when are all the members the same?

I When are some of the members different?

I Equisingularity is the study of these questions.

I Advantage: Easier to say when all the members of family are the
same, than when two individual sets or two maps are the same.

I Often the change in a single invariant suffices to pick out the
members which different than the rest.

I Infinitesimal methods natural and powerful for the study of families.

I Invariants of ICIS have both a topological/ geometric and
infinitesimal character. Hypersurface case: µ(f ) is the TRe(f )
codimension and the rank of the middle homology of the Milnor fiber
of f .



Notation

I The parameter space is Y , X d(0) denotes the fiber of the family over
{0}.

I X d+k denotes the total space of the family which is contained in
Y × CN . We always assume X d+k is equidimensional with
equidimensional fibers.

I We usually assume Y ⊂ X d+k ,

I X = F−1(0), X (y) = fy
−1(0), where fy (z) = F (y , z)

I S(X ) the singular locus of X .



Definitions and Examples
I The family is smoothly trivial if there exists a smooth family of origin

preserving bi-holomorphic germs ry such that ry (X (0)) = X (y).

I If the map-germs are only homeomorphisms we say the family is C 0

trivial.

I Example: Let X be the family of two moving lines in the plane with
equation F (y , z1, z2) = z1(z2 − yz1) = 0.

I y is the parameter, the z2 axis is fixed, a component of every member
of the family while the line z2 − yz1 = 0 moves with y .

I Our intuition says that all of these sets are the “same”.

I In fact, the family of functions F (y , z1, z2) = z1(z2 − yz1) are all right
equivalent to f0(z1, z2) = z1z2, because they are all Morse functions.
Hence the family is smoothly trivial.

I Problem: Show that for y 6= −1 the family of functions
F (y , z1, z2) = z1z2(z1 − (1 + y)z2) is smoothly trivial: this shows that
the family of 3 moving lines in C2 is smoothly trivial.



4 Moving Lines
I our intuition suggests that the family of n moving distinct lines

should be “equisingular”. But
I Example: Let X be the family of four moving lines with equation

F (x , y , z) = z1z2(z2 + z1)(z2 − (1 + y)z1) = 0. The parameter is y ,
the z1 and z2 axes and the line z2 + z1 = 0 are fixed.

I



4 Moving Lines continued

I Problem: Show that the family of 4 lines is not smoothly trivial.

I Hint: If ry is a trivialization of the family of sets, Dry (0) must carry
the tangent lines of X (0) to X (y). If a linear map preserves the lines
defined by z1 = 0, z2 = 0, z2 = −z1 then the linear map must be a
multiple of the identity. Hence ry can’t map z2 = z1 to
z2 = (1 + y)z1, y 6= 0.



Goal

I The family of four lines is not smoothly trivial, but we still want to
use infinitesimal methods as the foundation of our theory of
equisingularity.

I The infinitesimal approach using vectorfields, promises to reduce
equisingularity problems to algebra, just as Mather’s work does for
smooth equivalence.

I If not smooth, what kind of vectorfields do we use?



II Rugose vectorfields and Verdier’s condition W

I Given a family of hypersurfaces X over Y 1, defined by F (y , z)
consider the vectorfield:

I V = ( ∂
∂y
− ξ) defined on X0,

I

ξ(y , z) =

∑n
i=1

∂F
∂y

(y , z) ∂F
∂zi

(y , z) ∂
∂zi∑n

i=1
∂F
∂zi

(y , z) ∂F
∂zi

(y , z)
.

I V well-defined and real analytic where Dz(F ) 6= 0

I DF (V )(y , z) = Fy (y , z)−
∑n

i=1
∂F
∂y

(y ,z) ∂F
∂zi

(y ,z) ∂F
∂zi

(y ,z)∑n
i=1

∂F
∂zi

(y ,z) ∂F
∂zi

(y ,z)
= 0 where defined,

which implies V tangent to X0.

I We want conditions to ensure ξ(y , 0) = 0, flow of V is at least C 0.



Rugose vectorfields

I Theorem
(Verdier) the vectorfield V can be integrated to give a family of
homeomorphisms which trivialize X provided the inequality

‖ξ(y , z)‖ ≤ C‖z‖

holds on a neighborhood of the origin in X , for some C > 0.

I Verdier called such a vectorfield a rugose vectorfield.

I Verdier also defined a stratification condition condition W, which
ensured, that if it held between all pairs of incident strata, smooth
vectorfields on the smallest stratum lifted to rugose vectorfields on
larger strata.



Condition W: Distance between linear spaces.
I Suppose A, B are linear subspaces at the origin in CN

I

dist(A,B) = sup
u ∈ B⊥ − {0}
v ∈ A− {0}

‖(u, v)‖
‖u‖ ‖v‖

.

I Example we work with linear subspaces of R3. Let A = x-axis,
B ⊂ R3 a plane with unit normal u0, then
dist(A,B) = ‖u0 · (1, 0, 0)‖ = cos θ, where θ is the small angle
between u0 and the x-axis, in the plane they determine. So when the
distance is 0, B contains the x-axis.

I Definition
Suppose Y ⊂ X̄ , where X ,Y are strata in a stratification of an analytic
space, and dist(TY0,TXx) ≤ Cdist(x ,Y ) for all x close to Y . Then the
pair (X ,Y ) satisfies Verdier’s condition W at 0 ∈ Y (Verdier-1976).

I Theorem The set of points of Y where (X0,Y ) satisfy W is Zariski
open and dense.



W equisingular families

I Definition
A family X is W-equisingular (or just equisingular) if X has a
stratification in which adjacent pair of strata satisfy condition W, and the
parameter space Y is a stratum.

I Example The family of n moving distinct lines is W-equisingular
because the pair (X0,Y ) satisfies W, since X is made up of n
smooth surfaces, intersecting along Y , and Y is a submanifold of
each smooth surface.

I Since each component of X0 satisfies W over Y , so does X0.

I Teissier (’81) showed that Verdier’s condition W was equivalent to
the Whitney conditions over C. (So, whenever you hear Whitney
conditions, you can think W.)



W as an Analytic Inequality
I Set-up: We use the basic set-up with X k+n a family of hypersurfaces

in Y k × Cn+1.

I Proposition
Condition W holds for (X0,Y ) at (0, 0) if and only if there exists U a
neighborhood of (0, 0) in X and C > 0 such that

‖∂F
∂yl

(y , z)‖ ≤ C sup
i ,j
‖zi

∂F

∂zj
(y , z)‖

for all (y , z) ∈ U and for 1 ≤ l ≤ k .

I Proof: Set A = Y , and calculate the distance between Y and a
tangent plane to X0 at (y , z) which is our B .

I Use DF (y , z)/‖DF (y , z)‖ for u ∈ B⊥, standard basis for the vectors
from A.

I distance formula says that condition W holds if and only if



Proof continued

I

sup
1≤l≤k

‖ ∂F
∂yl

(y , z)‖
‖DF (y , z)‖

≤ C ′′dist((y , z),Y ) = C ′ sup
1≤i≤n+1

‖zi‖

I This is equivalent to

‖∂F
∂yl

(y , z)‖ ≤ C sup
1≤i≤n+1

‖zi‖ sup
1≤j≤n+1

‖∂F
∂zj

(y , z)‖

I Which gives the result.

I Denote the ideal generated by the partial derivatives of F with
respect to the z variables by Jz(F ), and the ideal generated by zj by
mY . Then zi

∂F
∂zj

are a set of generators for mY Jz(F ).

I The inequality above says that the partial derivatives of F with
respect to yl go to zero as fast as the ideal mY Jz(F ) does.



III The Theory of Integral Closure of Ideals and

Modules
I We want to describe algebraically what it means for a function to go

to zero as fast as an ideal does.
I f is integrally dependent on an ideal I if one of the following

equivalent conditions obtain:
I (i) There exists a positive integer k and elements aj in I j , so that f

satisfies the relation f k + a1f
k−1 + · · ·+ ak−1f + ak = 0 in OX ,0.

I (ii) There exists a neighborhood U of 0 in CN , a positive real number
C , representatives of the space germ X , 0 the function germ f , and
generators g1, . . . , gm of I on U , which we identify with the
corresponding germs, so that for all x in U we have:
‖f (x)‖ ≤ C max{‖g1(x)‖, . . . , ‖gm(x)‖}.

I (iii) For all analytic path germs φ : (C, 0)→ (X , 0) the pull–back
φ∗f = f ◦ φ is contained in the ideal generated by φ∗(I ) in the local
ring of C at 0. If for all paths φ∗f is contained in φ∗(I )m1, then we
say f is strictly dependent on I and write f ∈ I †.



Integral closure of ideals continued

I The set of all elements of OX ,x which are integrally dependent on I is
the integral closure of I and is denoted I .

I Proposition
If I is an ideal in OX ,x , then so is I .

I Proof: We use property iii). Let φ : (C, 0)→ (X , 0) be any analytic
curve, g ∈ OX ,x , f1, f2 in I .

I Then (gf1 + f2) ◦ φ = (g ◦ φ)(f1 ◦ φ) + (f2 ◦ φ) ∈ φ∗(I ), since φ∗(I ) is
an ideal in O1.

I Example
Let A = O2, I = (xn, yn). Suppose f = x iy j , i + j ≥ n. Consider the
monic polynomial h(T ) = T n − (xn)i(yn)j . Since (xn)i(yn)j is in
(I i)(I j) ⊂ I i+j ⊂ I n, and h(f ) = 0, then f ∈ I , and I ⊃ mn

2 .



Hypersurfaces, W and Integral Closure

I Proposition
Condition W holds for (X0,Y ) at (0, 0) if and only if ∂F

∂yl
∈ mY Jz(F ) for

1 ≤ l ≤ k .

I Proof: W holds if and only if

‖∂F
∂yl

(y , z)‖ ≤ C sup
i ,j
‖zi

∂F

∂zj
(y , z)‖

I By property 2 this is equivalent to ∂F
∂yl
∈ mY Jz(F ) for 1 ≤ l ≤ k .

I Problem Show that the family of hypersurfaces in C3 defined by
F = xn + yn + th, h ∈ mn+1

2 is W equisingular.

I What about higher codimension sets?



The Theory of Integral Closure for Modules:

Motivation
I Verdier’s condition W is based on the distance between the tangent

space TXx to X at smooth points x and the tangent space T to Y .
I Recall

dist(T ,TXx) = sup
u ∈ TX⊥x − {0}
v ∈ T − {0}

‖(u, v)‖
‖u‖ ‖v‖

.

I If u ∈ TX⊥x − {0}, then the set of points perpendicular to u consists
of a hyperplane which contains TXx . These hyperplanes are called
tangent hyperplanes; denote a tangent hyperplane to X , x by Hx , and
the collection of all tangent hyperplanes to X , x by C (X )x .

I the distance formula becomes:

dist(T ,TXx) = sup
Hx∈C(X )x

dist(T ,Hx)



The Jacobian Module and Tangent Hyperplanes

I If X = F−1(0) where F : Cn → Cp, F = (f1, . . . , fp) then at a
smooth point x of X , the entries of Dfi(x) are the coordinates of
linear form defining a tangent hyperplane.

I So, the projectivisation of the rowspace of the matrix of partial
derivatives of F is C (X )p.

I Since the tangent hyperplanes control the distance between the
tangent space of X , p and TY , 0, this suggests looking at the module
generated by the partial derivatives of F denoted JM(X ), just as we
looked at J(F ) in the hypersurface case.

I What does JM(X ) mean?



Basic Results from the Theory of Integral Closure

for Modules

I Notation: M ⊂ N ⊂ F p, F p a free OX ,x module of rank p, M ,N
submodules of F .

I If M is generated by g generators {mi}, then let [M] be the matrix of
generators whose columns are the {mi}.

I Definition
If h ∈ F p then h is integrally dependent on M , if for all curves φ,
h ◦ φ ∈ φ∗(M). The integral closure of M denoted M consists of all h
integrally dependent on M .

I Problem M is a module, M = M .

I Example Let [M] =

[
x y 0
0 x y

]
, then M = m2O2

2.



Module Analogue of Property 2 for Ideals

I Proposition
(Gaffney-1992, Prop 1.11) Suppose h ∈ Op

X ,x , M a submodule of Op
X ,x of

generic rank k on each component of X . Then h ∈ M if and only if for
each choice of generators {si} of M , there exists a constant C > 0 and a
neighborhood U of x such that for all ψ ∈ Γ(Hom(Cp,C)),

‖ψ(z) · h(z)‖ ≤ C sup
i
‖ψ(z) · si(z)‖

for all z ∈ U .

I (ψ(z) · s1(z), . . . ψ(z) · sn(z)) is a linear combination of the rows of a
matrix of generators of M .

I So the property is comparing the size of row vectors of M with the
corresponding element of h

I The constant C and the neighborhood U depend on h and M but
not on ψ.



Module Analogue of Property 2 for Ideals

I Corollary
Suppose h ∈ Op

X ,x , M a submodule of Op
X ,x of generic rank k on each

component of X . Then h ∈ M if and only if for each choice of generators
{si} of M , there exists a constant C > 0 and a neighborhood U of x such
that for all T ∈ Cp,

‖T · h(z)‖ ≤ C sup
i
‖T · si(z)‖

for all z ∈ U .

I Proof: Assume

‖ψ(z) · h(z)‖ ≤ C sup
i
‖ψ(z) · si(z)‖

for all z ∈ U , then take ψ to be the constant T ; conversely, we can
replace T by ψ, using the fact that the constant C is independent of
the choice of T .



IV Analytic spaces, W and Integral Closure

I Set-up: We use the basic set-up with X k+n an equidimensional family
of equidimensional sets, X k+n ⊂ Y k × CN , JM(X ) ⊂ Op.

Theorem
Condition W holds for (X0,Y ) at (0, 0) if and only if ∂F

∂yl
∈ mY JM(F ) for

1 ≤ l ≤ k .

I Proof: We re-work the form of Verdier’s condition W to fit our
current framework. If we work at a smooth point x of X , then a
conormal vector u of X at x can always be written as S · DF (x),
where S ∈ Cp; S is not unique unless DF (x) has rank p.

I Conversely, any such S gives a conormal vector. It is clear also that
W holds if the distance inequality holds for the standard basis for the
tangent space T of Y . Then



proof continued I

I

dist(T ,TXx) = sup
u ∈ TX⊥x − {0}
v ∈ T − {0}

‖(u, v)‖
‖u‖ ‖v‖

.

becomes

I

dist(T ,TXx) = sup
S ∈ Cp − {0}

1 ≤ i ≤ k , S · DF (x) 6= 0

‖S · ∂f
∂yi
‖

‖S · DF (x)‖

because ‖u‖ = ‖S · DF (x)‖, and ‖v‖ = 1.



proof continued II
I So Verdier’s condition W becomes:
I

sup
S ∈ Cp

1 ≤ i ≤ k

‖S · ∂f
∂yi
‖ ≤ C‖z‖ ‖S · DF (x)‖ .

I Since the functions are analytic and the inequality holds on a Z-open
set of X , we can assume it holds on a neighborhood of the origin.

I consider the integral closure condition, ∂F
∂yl
∈ mY JM(F ) for

1 ≤ l ≤ k . Using the last corollary, we have ∂F
∂yl
∈ mY JM(F ) for

1 ≤ l ≤ k if and only if
I

sup
S ∈ Cp

1 ≤ i ≤ k

‖S · ∂f
∂yi
‖ ≤ C sup

1≤i≤n
‖ziS · DF (x)‖ .

I But this is easily seen to be equivalent to the previous inequality
which finishes the proof.



JM(F ) vs. JMz(F )
I Let JMY (F ) denote the submodule of JM(F ) generated by

∂F
∂yl
, 1 ≤ l ≤ k , JMz(F ) the partials with respect to z .

I Proposition
JMY (F ) ⊂ mY JM(F ) if and only if JMY (F ) ⊂ mY JMz(F ).

I Proof: Clear that JMY (F ) ⊂ mY JMz(F ) implies
JMY (F ) ⊂ mY JM(F ).

I Let φ be any curve on X , 0. Then

I

φ∗(JMz(F )) ⊂ φ∗JM(F ) = φ∗JMz(F ) + φ∗JMY (F )

= φ∗JMz(F ) + m1φ
∗JM(F ).

I Then by Nakayama’s lemma, φ∗(JMz(F )) = φ∗JM(F ) and
φ∗(mY JMz(F )) = φ∗(mY JM(F )).

I Since φ is arbitrary, mY JMz(F ) = mY JM(F ).



Families of ICIS

I For W, we compare the size of row vectors of DF (x), with the part of
the row vector coming from DYF (x). Since the part coming from
DYF (x) must go to zero faster than the whole vector, it is sensible
that it suffices to compare it with the part coming from DzF . The
last proposition justifies this intuition.

I Given a family of ICIS in Y k ×Cn, JMz(F )|X (y) = JM(X d
y ) and this

has finite colength in On−d
Xy

, so e(JM(X d
y ,On−d

Xy
, 0) multiplicity of

JM(X d
y ) in On−d

Xy
is well defined.

I In the next sections we will see how the multiplicity can be used to
give necessary and sufficient conditions for W to hold for a family of
ICIS.

I Questions?
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V Multiplicities of Ideals and Modules

I The multiplicity of an ideal or module or pair of modules is one of the
most important invariants we can associate to an m-primary module.

I It is intimately connected with integral closure.

I It has both a length theoretic definition and intersection theoretic
definition.

I In the applications it has both an infinitesimal and topological/
geometric interpretation.



Basic Constructions for ideals and modules

I Given a submodule M of a free OX d module F of rank p, we can
associate a subalgebra R(M) of the symmetric OX d algebra on p
generators called the Rees algebra of M .

I If (m1, . . . ,mp) is an element of M then
∑

miTi is the corresponding
element of R(M).

I Mn is the terms of R(M) of degree n.

I Projan(R(M)), the projective analytic spectrum of R(M) is the
closure of the projectivised row spaces of M at points where the rank
of a matrix of generators of M is maximal.

I Projan(R(JM(X ))) is the conormal space of X . It consists of the
tangent hyperplanes to X0 and the closure of this space in X × Pn−1,
X ⊂ Cn.

I Denote the projection to X d by c , or by cM where there is ambiguity.



Length Theoretic Definition of Multiplicity
I Denote the length of a module M by l(M).

I Theorem/Definition
(Buchsbaum-Rim-1963) Suppose M ⊂ F , M ,F both A-modules, F free of
rank p, A a Noetherian local ring of dimension d , F/M of finite length,
F = A[T1, . . . ,Tp], R(M) ⊂ F , then
λ(n) = l(Fn/Mn) is eventually a polynomial P(M ,F ) of degree d+p-1.
Writing the leading coefficient of P(M ,F ) as e(M)/(d + p − 1)!, then we
define e(M) as the multiplicity of M .

I Example Claim: Let M = I = (x2, xy , y 2) ⊂ O2. Then e(M) = 4.
I We have p = 1, F = O2, and we work with F = O2[T1]. (Notice

that ProjanF = C2.)
I Now Mn = I nT n = m2n

2 T n, so
I

l(Fn/Mn) = l(O2/m
2n) = (2n)(2n + 1)/2 = 4n2/2! + (l .o.t.)

I So e(M) = 4.



Geometric meaning of multiplicity

I Suppose I = (f1, . . . , fd) ⊂ OX d , then e(I ) =deg f , where
f = (f1, . . . , fd) : X d → Cd .

I Suppose I has more than d generators; find J = (f1, . . . , fd) ⊂ I and
J = I , then e(I ) =deg f , where f = (f1, . . . , fd) : X d → Cd .

I J is called a reduction of I .

I Suppose M ⊂ Op
X d has d + p − 1 generators. Then e(M , 0) =

number of times we count 0 as a point where the rank of M < p. If
M has more than d + p − 1 generators, take a reduction with
d + p − 1 generators as before.



Example

I Example Let [M] =

[
x y 0
0 x y

]
. e(M) = 3, M has 2+2-1=3

generators.

I Let [M(t)] =

[
x − t y − t 0

0 x y

]
I Then for t 6= 0, [M(t)] has rank 1 only at (0, 0), (t, 0), (t, t).

I So for M we should count (0, 0) three times when counting the
number of points where the rank of M < 2, and e(M) does this.

I For a p × (d + p − 1) matrix, the expected codimension of the set of
points where the matrix has less than maximal rank is d .

I This explains why we use d + p − 1 generators for the reduction.



Reductions of Modules
I Goal: Be able to show mY JMz(F ) = JMY (F ) + mY JM(F )
I Given M ⊂ F p, R a submodule of M with M = R . Then R is called

a reduction of M .
I If M ⊂ N ⊂ F p or h is a section of N , then h and M generate ideals

on ProjanR(N). Denote them by ρ(h) and M.
I If h =

∑
gini , {ni} a set of generators of N then in the chart in

which T1 6= 0, we have:
I ρ(h) =

∑
giTi/T1.

I Example
If M is the Jacobian module of X and N = F p then V (M) consists of
pairs (x , L) where x ∈ X and L ∈ PHom(Cp,C), and L ◦ DF (x) = 0. If H
is the hyperplane which is the kernel of L, then the image of DF (x) lies in
H .

I Looking at (M ,N) allows us to “strip out” one copy of N from M , as
the following example shows.



Reductions II

I Example
Let M = I = (x2, xy , z) = J(z2 − x2y) and N = J = (x , z). M is the
Jacobian ideal of the Whitney umbrella, and N defines the singular locus
of the umbrella.

I working on C3, R(N) = O3[xS , zS ] is isomorphic to
R = O3[T1,T2]/(zT1 − xT2), by xS → T1, zS → T2.

I This shows BJ(C3) = ProjanR(N).

I Since x2 = x · x , xy = y · x , z = z the map from R(I ) to R has
image (xT1, yT1,T2):

I this induces the ideal sheaf I on ProjanR(N), which is supported
only at the point (0, [1, 0]).



Reductions III

I Proposition
Suppose M ⊂ N ⊂ Op

X ,0 are Op
X modules with matrix of generators [M],

[N], and [F ] is a matrix such that [M] = [N][F ]. Let F be the ideal sheaf
induced on Projan(R(N)) by the module F with matrix of generators [F ].
Then M = N if and only if V (F) is empty.

I Cf the notes in the section “Blowing up modules and Connection
with Ideals II”.

I Problem Find [F ] if M = (x2, y 2), N = (x2, y 2, xy), and show V (F )
is empty.

I M ⊂ N , F as above, then the inclusion i : M → N induces a map πM
from Projan(R(N)) \ V (F) to Projan(R(M)).

I πM(x , p) = (x ,F(p)), where F(p) is evaluation at p of the set of
generators of F which come from the columns of [F ].



Reductions IV

I Corollary
Suppose M and N as above, then the following are equivalent:

1. M is reduction of N.
2. V (F) is empty.
3. The induced map πM is a finite map from Projan(R(N)) to

Projan(R(M)).

I Proposition
Suppose N ⊂ F , F a free OX ,x module, and suppose the fiber of
ProjanR(N) over x has dimension k . Then N has a reduction M , where
M is generated by k + 1 elements.

I Proof: ProjanR(N) ⊂ X × Pg−1

I Choose plane P in Pg−1 of codimension k + 1 so the intersection of
P and the fiber of ProjanR(N) over x is empty.



Proof of the Proposition continued
I Choose coordinates on Pg−1 so P given by T1 = · · · = Tk+1 = 0
I Choosing coordinates on Pg−1 is equivalent to choosing generators on

N .
I Let M be the submodule of N generated by the first k + 1 generators

of N after the new choice of generators. Then the projection onto the
first k + 1 coordinates of Pg−1, when restricted to ProjanR(N) gives
a finite map to ProjanR(M). Hence M is a reduction of N by 3).

I Corollary
Suppose N ⊂ F , F a free OX ,x module, X d equidimensional, N has
generic rank e on each component of X , x , then N has a reduction with
d + e − 1 generators.

I Proof: Generic rank of N is e, so the generic fiber dimension of
ProjanR(N) is e − 1, and dimProjanR(N) = d + e − 1.

I Then d + e − 2 is the largest the dimension of the fiber of
ProjanR(N) over x can be, so N has a reduction with
(d + e − 2) + 1 generators.



Exercises

I Problem Let JM(X , 0)H denote the submodule of JM(X ) generated
by {DF (V )}, V ∈ H . Show that if H is a hyperplane, then
JM(X , 0)H is a reduction of JM(X , 0) iff H is not a limiting tangent
hyperplane of X at 0. (Hint: Show V (F) is empty.)



Reductions, multiplicity and Cohen-Macauley Rings
I Theorem

(Rees) Suppose M ⊂ N are m primary submodules of F p, and M = N .
Then e(M) = e(N). Suppose further that OX ,x is equidimensional, then
e(M) = e(N) implies M = N .

I Proof:Kleiman-Thorup-1994.
I Remark: If OX d ,x is Cohen-Macaulay, and M ⊂ F p has d + p − 1

generators, then
I e(M) = colength M = colength J(M), the ideal of maximal minors

of M . ( Buchsbaum-Rim-1963, 2.4 p.207, 4.3 and 4.5 p.223.)

I Proposition
Let X 1, 0 ⊂ Cn, 0 be an ICIS, defined by f = (f1, . . . , fn−1), where fi is
homogeneous of degree di . Then

e(JM(X )) =
(∑n−1

i=1 (di − 1)
)

(
n−1∏
i=1

di).



Multiplicity and Lines in Space
I Proof: X consists of (

∏n−1
i=1 di) lines, by Bezout’s theorem.

I Choose n − 1 columns of the matrix of partial derivatives, such that
the submatrix, [N] gotten has rank n − 1 on X except at 0. Denote
the module the columns generate by N .

I Can assume N is a reduction of JM(X ).
I det[N] is homogeneous of degree (

∑n−1
i=1 (di − 1)), and

e(N) =colength of det[N] in OX , by Buchsbaum-Rim.
I colength of det[N] in OX = degree of det[N] as a map from X to C,

since OX is Cohen-Macauley.
I degree of det[N] on each line in X is the homogeneous degree of

det[N]
I degree of det[N] on X is the sum of the degrees on each component.
I so

e(JM(X )) = e(N) =
(∑n−1

i=1 (di − 1)
)

(
n−1∏
i=1

di)



e(JM(X)) and the Lê-Greuel Theorem

I Proposition
(Module form of the Lê-Greuel formula) Let X d , 0 be an ICIS, d > 0, H a
hyperplane which is not a limit tangent hyperplane to X at the origin.
Then

e(JM(X ), 0) = µ(X ) + µ(X ∩ H).

I Recall, Lê-74 and Greuel-75 proved the following formula:

µ(X ) + µ(X ′) = dimC
OCn,0

I
,

where X is the ICIS defined by F : (Cn, 0)→ (Ck , 0) ; F the map
with components f1, . . . , fk and X ′ the ICIS defined by
F ′ : (Cn, 0)→ (Ck+1, 0); F ′ the map with components f1, . . . , fk+1,
and I is the ideal generated by f1, . . . , fk , and the

k + 1× k + 1-minors
∂(f1,...,fk+1)

∂(xi1 ,...,xik+1
)
.



Lê-Greuel II

I Proof:

I Let L be the linear form defining H . Let L be fk+1 in the formula.

I The right hand side of the formula becomes µ(X ) + µ(X ∩ H).

I e(JM(X )H) = e(JM(X )) since H is a hyperplane which is not a limit
tangent hyperplane to X at the origin.

I the ideal of k + 1× k + 1 minors of a matrix of generators of
JM(X ∩ H) is the same as the ideal of k × k minors of a matrix of
generators of JM(X )H .

I This implies that the colength of I in the formula is the colength of
k × k minors of JM(X )H , which by the Buchsbaum-Rim theorem is
e(JM(X )H).



Calculating Milnor Numbers Inductively

I Proposition
Suppose I defines an ICIS X of dimension 0; then µ(X ) = e(I ,On)− 1

I Proof: I an ICIS implies I = (f1, . . . , fn).

I Then e(I ) = deg(f1, . . . , fn) at 0 as a map f from Cn, 0→ Cn, 0.

I #f −1(p) = e(I ), p not a critical value.

I Fixing one point, as a common point for every 0 sphere, we get a
bouquet of (e(I )− 1) 0-spheres. So the Milnor number is
e(I ,On)− 1.



Calculating Milnor Numbers: An Example

I Corollary
Let X 1 be a homogeneous ICIS, then

µ(X ) =
(∑n−1

i=1 (di − 1)
)(n−1∏

i=1

di

)
−

n−1∏
i=1

di + 1.

I Proof e(JM(X ), 0) = µ(X ) + µ(X ∩ H).

I Solving for µ(X ) we get

µ(X ) = e(JM(X ), 0)− µ(X ∩ H).

I Since X has dimension 1, µ(X ∩ H) = m(X )− 1 by the previous
proposition. Since X is a union of lines we know
e(JM(X ), 0) =

∑n−1
i=1 (di − 1))

∏n−1
i=1 di , while

m(X )− 1 = (
∏n−1

i=1 di)− 1, from which the result follows.



Principle of Specialization of Integral Dependence

(PSID)

I First proved by Teissier-’73 for ideals, our proof uses ideas which
appear in Teissier-’80.

I Theorem
G-Kleiman ’99 (Principle of Specialization of Integral Dependence)
Assume that X is equidimensional, and that y 7→ e(y) is constant on Y k .
Let h be a section of a free OX module E whose image in E (y) is
integrally dependent on the image of M(y) for all y in a dense Zariski
open subset of Y . Then h is integrally dependent on M .



Equisingularity of families of ICIS: Sufficiency

Theorem
Let X be a family of ICIS over Y k as in the basic setup. Suppose
e(mJM(X (y), 0)) is independent of y . Then X − Y is smooth, and the
pair (X − Y ,Y ) satisfies W.

I Proof: Since e(y) is upper semi-continuous, there can be no points
on X (y) except the origin in the co-support of mJM(X (y)); hence
JM(X (y)) has maximal rank except at 0 so X (y) is smooth except
at 0.

I This also implies that JMz(X ) has maximal rank off Y , so X − Y is
smooth.

I By the genericity of W, we have ∂F
∂yl
∈ mY JM(F ) for 1 ≤ l ≤ k on a

Z-open subset of Y . So by the PSID, we have that it holds at all
points and the family is W equisingular.



Equisingularity of families of ICIS: Necessity
I Given the product mJM(X ), there is an expansion formula which

relates e(mJM(X )) our infinitesimal invariant to the µ∗ invariants,
which are our topological/geometric invariants.

Theorem
Suppose X d , 0 is an ICIS, Hi a generic plane of codimension i for X d then

e(mJM(X , 0)) =

(
n − 1

d

)
m(X , 0) +

∑d−1
i=0

(
n − 1

i

)
e(JM(X ∩ Hi , 0))

=

(
n − 1

d

)
(µd(X , 0) + 1) +

∑d−1
i=0

(
n − 1

i

)
(µi(X , 0) + µi+1(X , 0))

I Proof (G-’96)

Corollary
Let X be a family of ICIS over Y k as in the basic setup. Suppose
e(mJM(X (y), 0)) is independent of y . Then the µ∗ sequence of X (y) is
independent of y .



Equisingularity of families of ICIS: Necessity II

Proof: µ∗(X (y)) sequence is upper semi-continuous in y , as is
e(mJM(X (y), 0)); so, all of the terms in the sum must remain constant, if
the value of the sum does.

I Theorem
(Necessity) Suppose X is a family of ICIS, and the pair (X − Y ,Y )
satisfies W at the origin. Then, the µ∗ sequence of X (y) is independent of
y , as is e(myJM(X (y))).

I Proof: Since the families of generic plane sections also satisfy W by
Teissier-’81 (See also the notes for a new proof), it follows that these
families are topologically trivial,

I Hence the µ∗ sequence of X (y) is independent of y . This implies
e(myJM(X (y))) is independent of y by the expansion formula.
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