Lecture 4: Equisingularity and ICIS

by Terence Gaffney

- Welcome to Equisingularity!
- Please read the notes for lecture 4. They will be used in the course on Determinantal singularities.
- Please do all the exercises in the notes. Whenever you are trying to understand a definition, make up an easy problem and solve it, if there isn't one already. We will have an exercise session next week.
- I encourage you to talk to me at any time during the school if you have any questions.

I Introduction and Some Basic Examples

- To understand a singularity X we want to understand the "nearby" singularities-the singularities that appear in the deformations of X.
- Given a family of sets or maps, when are all the members the same?
- When are some of the members different?
- Equisingularity is the study of these questions.
- Advantage: Easier to say when all the members of family are the same, than when two individual sets or two maps are the same.
- Often the change in a single invariant suffices to pick out the members which different than the rest.
- Infinitesimal methods natural and powerful for the study of families.
- Invariants of ICIS have both a topological/ geometric and infinitesimal character. Hypersurface case: $\mu(f)$ is the $T \mathcal{R}_{e}(f)$ codimension and the rank of the middle homology of the Milnor fiber of f.

Notation

$$
\begin{array}{ll}
X^{d}(0) \subset & \mathcal{X}^{d+k} \subset Y \times \mathbb{C}^{N} \\
0 \in & Y=\mathbb{C}^{k}
\end{array}
$$

- The parameter space is $Y, X^{d}(0)$ denotes the fiber of the family over $\{0\}$.
- \mathcal{X}^{d+k} denotes the total space of the family which is contained in $Y \times \mathbb{C}^{N}$. We always assume \mathcal{X}^{d+k} is equidimensional with equidimensional fibers.
- We usually assume $Y \subset \mathcal{X}^{d+k}$,
- $\mathcal{X}=F^{-1}(0), X(y)=f_{y}{ }^{-1}(0)$, where $f_{y}(z)=F(y, z)$
- $S(X)$ the singular locus of X.

Definitions and Examples

- The family is smoothly trivial if there exists a smooth family of origin preserving bi-holomorphic germs r_{y} such that $r_{y}(X(0))=X(y)$.
- If the map-germs are only homeomorphisms we say the family is C^{0} trivial.
- Example: Let \mathcal{X} be the family of two moving lines in the plane with equation $F\left(y, z_{1}, z_{2}\right)=z_{1}\left(z_{2}-y z_{1}\right)=0$.
- y is the parameter, the z_{2} axis is fixed, a component of every member of the family while the line $z_{2}-y z_{1}=0$ moves with y.
- Our intuition says that all of these sets are the "same".
- In fact, the family of functions $F\left(y, z_{1}, z_{2}\right)=z_{1}\left(z_{2}-y z_{1}\right)$ are all right equivalent to $f_{0}\left(z_{1}, z_{2}\right)=z_{1} z_{2}$, because they are all Morse functions. Hence the family is smoothly trivial.
- Problem: Show that for $y \neq-1$ the family of functions $F\left(y, z_{1}, z_{2}\right)=z_{1} z_{2}\left(z_{1}-(1+y) z_{2}\right)$ is smoothly trivial: this shows that the family of 3 moving lines in \mathbb{C}^{2} is smoothly trivial.

4 Moving Lines

- our intuition suggests that the family of n moving distinct lines should be "equisingular". But
- Example: Let \mathcal{X} be the family of four moving lines with equation $F(x, y, z)=z_{1} z_{2}\left(z_{2}+z_{1}\right)\left(z_{2}-(1+y) z_{1}\right)=0$. The parameter is y, the z_{1} and z_{2} axes and the line $z_{2}+z_{1}=0$ are fixed.

4 Moving Lines continued

- Problem: Show that the family of 4 lines is not smoothly trivial.
- Hint: If r_{y} is a trivialization of the family of sets, $D r_{y}(0)$ must carry the tangent lines of $X(0)$ to $X(y)$. If a linear map preserves the lines defined by $z_{1}=0, z_{2}=0, z_{2}=-z_{1}$ then the linear map must be a multiple of the identity. Hence r_{y} can't map $z_{2}=z_{1}$ to $z_{2}=(1+y) z_{1}, y \neq 0$.

Goal

- The family of four lines is not smoothly trivial, but we still want to use infinitesimal methods as the foundation of our theory of equisingularity.
- The infinitesimal approach using vectorfields, promises to reduce equisingularity problems to algebra, just as Mather's work does for smooth equivalence.
- If not smooth, what kind of vectorfields do we use?
- Given a family of hypersurfaces \mathcal{X} over Y^{1}, defined by $F(y, z)$ consider the vectorfield:
- $V=\left(\frac{\partial}{\partial y}-\xi\right)$ defined on \mathcal{X}_{0},

$$
\xi(y, z)=\frac{\sum_{i=1}^{n} \frac{\partial F}{\partial y}(y, z) \frac{\overline{\partial F}}{\partial z_{y}}(y, z) \frac{\partial}{\partial z_{i}}}{\sum_{i=1}^{n} \frac{\partial F}{\partial z_{i}}(y, z) \frac{\partial F}{\partial z_{i}}(y, z)} .
$$

- V well-defined and real analytic where $D_{z}(F) \neq 0$
- $D F(V)(y, z)=F_{y}(y, z)-\frac{\sum_{i=1}^{n} \frac{\partial F}{\partial y}(y, z) \frac{\partial F}{\partial z_{i}}(y, z) \frac{\partial F}{\partial \partial_{i}}(y, z)}{\sum_{i=1}^{n} \frac{\partial}{\partial z_{i}}(y, z) \frac{\partial F}{\partial z_{i}}(y, z)}=0$ where defined, which implies V tangent to \mathcal{X}_{0}.
- We want conditions to ensure $\xi(y, 0)=0$, flow of V is at least C^{0}.

Rugose vectorfields

Theorem

(Verdier) the vectorfield V can be integrated to give a family of homeomorphisms which trivialize \mathcal{X} provided the inequality

$$
\|\xi(y, z)\| \leq C\|z\|
$$

holds on a neighborhood of the origin in \mathcal{X}, for some $C>0$.

- Verdier called such a vectorfield a rugose vectorfield.
- Verdier also defined a stratification condition condition W, which ensured, that if it held between all pairs of incident strata, smooth vectorfields on the smallest stratum lifted to rugose vectorfields on larger strata.

Condition W: Distance between linear spaces.

- Suppose A, B are linear subspaces at the origin in \mathbb{C}^{N}

$$
\operatorname{dist}(A, B)=\sup _{\substack{u \in B^{\perp}-\{0\} \\ v \in A-\{0\}}} \frac{\|(u, v)\|}{\|u\|\|v\|} .
$$

- Example we work with linear subspaces of \mathbb{R}^{3}. Let $A=x$-axis, $B \subset \mathbb{R}^{3}$ a plane with unit normal u_{0}, then $\operatorname{dist}(A, B)=\left\|u_{0} \cdot(1,0,0)\right\|=\cos \theta$, where θ is the small angle between u_{0} and the x-axis, in the plane they determine. So when the distance is $0, B$ contains the x-axis.

Definition

Suppose $Y \subset \bar{X}$, where X, Y are strata in a stratification of an analytic space, and dist $\left(T Y_{0}, T X_{x}\right) \leq C \operatorname{dist}(x, Y)$ for all x close to Y. Then the pair (X, Y) satisfies Verdier's condition W at $0 \in Y$ (Verdier-1976).

- Theorem The set of points of Y where $\left(X_{0}, Y\right)$ satisfy W is Zariski open and dense.

W equisingular families

Definition

A family \mathcal{X} is W-equisingular (or just equisingular) if \mathcal{X} has a stratification in which adjacent pair of strata satisfy condition W, and the parameter space Y is a stratum.

- Example The family of n moving distinct lines is W -equisingular because the pair $\left(\mathcal{X}_{0}, Y\right)$ satisfies W , since \mathcal{X} is made up of n smooth surfaces, intersecting along Y, and Y is a submanifold of each smooth surface.
- Since each component of \mathcal{X}_{0} satisfies W over Y, so does \mathcal{X}_{0}.
- Teissier ('81) showed that Verdier's condition W was equivalent to the Whitney conditions over \mathbb{C}. (So, whenever you hear Whitney conditions, you can think W.)

W as an Analytic Inequality

- Set-up: We use the basic set-up with \mathcal{X}^{k+n} a family of hypersurfaces in $Y^{k} \times \mathbb{C}^{n+1}$.

Proposition

Condition W holds for $\left(\mathcal{X}_{0}, Y\right)$ at $(0,0)$ if and only if there exists U a neighborhood of $(0,0)$ in \mathcal{X} and $C>0$ such that

$$
\left\|\frac{\partial F}{\partial y_{l}}(y, z)\right\| \leq C \sup _{i, j}\left\|z_{i} \frac{\partial F}{\partial z_{j}}(y, z)\right\|
$$

for all $(y, z) \in U$ and for $1 \leq I \leq k$.

- Proof: Set $A=Y$, and calculate the distance between Y and a tangent plane to \mathcal{X}_{0} at (y, z) which is our B.
- Use $\overline{D F(y, z)} /\|D F(y, z)\|$ for $u \in B^{\perp}$, standard basis for the vectors from A.
- distance formula says that condition W holds if and only if

$$
\sup _{1 \leq I \leq k} \frac{\left\|\frac{\partial F}{\partial y}(y, z)\right\|}{\|D F(y, z)\|} \leq C^{\prime \prime} \operatorname{dist}((y, z), Y)=C^{\prime} \sup _{1 \leq i \leq n+1}\left\|z_{i}\right\|
$$

- This is equivalent to

$$
\left\|\frac{\partial F}{\partial y_{l}}(y, z)\right\| \leq C \sup _{1 \leq i \leq n+1}\left\|z_{i}\right\| \sup _{1 \leq j \leq n+1}\left\|\frac{\partial F}{\partial z_{j}}(y, z)\right\|
$$

- Which gives the result.
- Denote the ideal generated by the partial derivatives of F with respect to the z variables by $J_{z}(F)$, and the ideal generated by z_{j} by m_{Y}. Then $z_{i} \frac{\partial F}{\partial z_{j}}$ are a set of generators for $m_{Y} J_{z}(F)$.
- The inequality above says that the partial derivatives of F with respect to y_{l} go to zero as fast as the ideal $m_{Y} J_{Z}(F)$ does.

Modules

- We want to describe algebraically what it means for a function to go to zero as fast as an ideal does.
- f is integrally dependent on an ideal $/$ if one of the following equivalent conditions obtain:
- (i) There exists a positive integer k and elements a_{j} in I^{j}, so that f satisfies the relation $f^{k}+a_{1} f^{k-1}+\cdots+a_{k-1} f+a_{k}=0$ in $\mathcal{O}_{X, 0}$.
- (ii) There exists a neighborhood U of 0 in \mathbb{C}^{N}, a positive real number C, representatives of the space germ $X, 0$ the function germ f, and generators g_{1}, \ldots, g_{m} of I on U, which we identify with the corresponding germs, so that for all x in U we have:
$\|f(x)\| \leq C \max \left\{\left\|g_{1}(x)\right\|, \ldots,\left\|g_{m}(x)\right\|\right\}$.
- (iii) For all analytic path germs $\phi:(\mathbb{C}, 0) \rightarrow(X, 0)$ the pull-back $\phi^{*} f=f \circ \phi$ is contained in the ideal generated by $\phi^{*}(I)$ in the local ring of \mathbb{C} at 0 . If for all paths $\phi^{*} f$ is contained in $\phi^{*}(I) m_{1}$, then we say f is strictly dependent on I and write $f \in I^{\dagger}$

Integral closure of ideals continued

- The set of all elements of $\mathcal{O}_{X, x}$ which are integrally dependent on I is the integral closure of I and is denoted \bar{I}.

Proposition

If I is an ideal in $\mathcal{O}_{X, x}$, then so is \bar{T}.

- Proof: We use property iii). Let $\phi:(\mathbb{C}, 0) \rightarrow(X, 0)$ be any analytic curve, $g \in \mathcal{O}_{x, x}, f_{1}, f_{2}$ in \bar{I}.
- Then $\left(g f_{1}+f_{2}\right) \circ \phi=(g \circ \phi)\left(f_{1} \circ \phi\right)+\left(f_{2} \circ \phi\right) \in \phi^{*}(I)$, since $\phi^{*}(I)$ is an ideal in \mathcal{O}_{1}.

Example

 Let $A=\mathcal{O}_{2}, I=\left(x^{n}, y^{n}\right)$. Suppose $f=x^{i} y^{j}, i+j \geq n$. Consider the monic polynomial $h(T)=T^{n}-\left(x^{n}\right)^{i}\left(y^{n}\right)^{j}$. Since $\left(x^{n}\right)^{i}\left(y^{n}\right)^{j}$ is in $\left(I^{i}\right)\left(I^{j}\right) \subset I^{i+j} \subset I^{n}$, and $h(f)=0$, then $f \in \bar{l}$, and $\bar{l} \supset m_{2}^{n}$.Condition W holds for $\left(\mathcal{X}_{0}, Y\right)$ at $(0,0)$ if and only if $\frac{\partial F}{\partial y \mid} \in \overline{m_{Y} J_{z}(F)}$ for $1 \leq I \leq k$.

- Proof: W holds if and only if

$$
\left\|\frac{\partial F}{\partial y_{l}}(y, z)\right\| \leq C \sup _{i, j}\left\|z_{i} \frac{\partial F}{\partial z_{j}}(y, z)\right\|
$$

- By property 2 this is equivalent to $\frac{\partial F}{\partial y_{l}} \in \overline{m_{Y} J_{z}(F)}$ for $1 \leq I \leq k$.
- Problem Show that the family of hypersurfaces in \mathbb{C}^{3} defined by $F=x^{n}+y^{n}+t h, h \in m_{2}^{n+1}$ is W equisingular.
- What about higher codimension sets?

The Theory of Integral Closure for Modules:

Motivation

- Verdier's condition W is based on the distance between the tangent space $T X_{x}$ to X at smooth points x and the tangent space T to Y.
- Recall

$$
\operatorname{dist}\left(T, T X_{x}\right)=\sup _{u \in T X_{x}^{\perp}-\{0\}} \frac{\|(u, v)\|}{\|u\|\|v\|}
$$

- If $u \in T X_{x}^{\perp}-\{0\}$, then the set of points perpendicular to u consists of a hyperplane which contains $T X_{x}$. These hyperplanes are called tangent hyperplanes; denote a tangent hyperplane to X, x by H_{x}, and the collection of all tangent hyperplanes to X, x by $C(X)_{x}$.
- the distance formula becomes:

$$
\operatorname{dist}\left(T, T X_{x}\right)=\sup _{H_{x} \in C(X)_{x}} \operatorname{dist}\left(T, H_{x}\right)
$$

- If $X=F^{-1}(0)$ where $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{p}, F=\left(f_{1}, \ldots, f_{p}\right)$ then at a smooth point x of X, the entries of $D f_{i}(x)$ are the coordinates of linear form defining a tangent hyperplane.
- So, the projectivisation of the rowspace of the matrix of partial derivatives of F is $C(X)_{p}$.
- Since the tangent hyperplanes control the distance between the tangent space of X, p and $T Y, 0$, this suggests looking at the module generated by the partial derivatives of F denoted $J M(X)$, just as we looked at $J(F)$ in the hypersurface case.
- What does $\overline{J M(X)}$ mean?

Basic Results from the Theory of Integral Closure for Modules

- Notation: $M \subset N \subset F^{p}, F^{p}$ a free $\mathcal{O}_{X, x}$ module of rank p, M, N submodules of F.
- If M is generated by g generators $\left\{m_{i}\right\}$, then let $[M]$ be the matrix of generators whose columns are the $\left\{m_{i}\right\}$.

Definition

If $h \in F^{p}$ then h is integrally dependent on M, if for all curves ϕ, $h \circ \phi \in \phi^{*}(M)$. The integral closure of M denoted \bar{M} consists of all h integrally dependent on M.

- Problem \bar{M} is a module, $\overline{\bar{M}}=\bar{M}$.
- Example Let $[M]=\left[\begin{array}{lll}x & y & 0 \\ 0 & x & y\end{array}\right]$, then $\bar{M}=m_{2} \mathcal{O}_{2}^{2}$.

Module Analogue of Property 2 for Ideals

Proposition

(Gaffney-1992, Prop 1.11) Suppose $h \in \mathcal{O}_{X, x}^{p}, M$ a submodule of $\mathcal{O}_{X, x}^{p}$ of generic rank k on each component of X. Then $h \in \bar{M}$ if and only if for each choice of generators $\left\{s_{i}\right\}$ of M, there exists a constant $C>0$ and a neighborhood U of x such that for all $\psi \in \Gamma\left(\operatorname{Hom}\left(\mathbb{C}^{p}, \mathbb{C}\right)\right)$,

$$
\|\psi(z) \cdot h(z)\| \leq C \sup _{i}\left\|\psi(z) \cdot s_{i}(z)\right\|
$$

for all $z \in U$.

- $\left(\psi(z) \cdot s_{1}(z), \ldots \psi(z) \cdot s_{n}(z)\right)$ is a linear combination of the rows of a matrix of generators of M.
- So the property is comparing the size of row vectors of M with the corresponding element of h
- The constant C and the neighborhood U depend on h and M but not on ψ.

Module Analogue of Property 2 for Ideals

Corollary

Suppose $h \in \mathcal{O}_{X, x,}^{p}, M$ a submodule of $\mathcal{O}_{X, x}^{p}$ of generic rank k on each component of X. Then $h \in \bar{M}$ if and only if for each choice of generators $\left\{s_{i}\right\}$ of M, there exists a constant $C>0$ and a neighborhood U of x such that for all $T \in \mathbb{C}^{p}$,

$$
\|T \cdot h(z)\| \leq C \sup _{i}\left\|T \cdot s_{i}(z)\right\|
$$

for all $z \in U$.

- Proof: Assume

$$
\|\psi(z) \cdot h(z)\| \leq C \sup _{i}\left\|\psi(z) \cdot s_{i}(z)\right\|
$$

for all $z \in U$, then take ψ to be the constant T; conversely, we can replace T by ψ, using the fact that the constant C is independent of the choice of T.

IV Analytic spaces, W and Integral Closure

- Set-up: We use the basic set-up with \mathcal{X}^{k+n} an equidimensional family of equidimensional sets, $\mathcal{X}^{k+n} \subset Y^{k} \times \mathbb{C}^{N}, J M(X) \subset \mathcal{O}^{p}$.

Theorem

Condition W holds for $\left(\mathcal{X}_{0}, Y\right)$ at $(0,0)$ if and only if $\frac{\partial F}{\partial y_{I}} \in \overline{m_{Y} J M(F)}$ for $1 \leq I \leq k$.

- Proof: We re-work the form of Verdier's condition W to fit our current framework. If we work at a smooth point x of X, then a conormal vector u of X at x can always be written as $S \cdot D F(x)$, where $S \in \mathbb{C}^{p} ; S$ is not unique unless $D F(x)$ has rank p.
- Conversely, any such S gives a conormal vector. It is clear also that W holds if the distance inequality holds for the standard basis for the tangent space T of Y. Then

$$
\operatorname{dist}\left(T, T X_{x}\right)=\sup _{\substack{u \in T X_{x}^{\perp}-\{0\} \\ v \in T-\{0\}}} \frac{\|(u, v)\|}{\|u\|\|v\|} .
$$

becomes

$$
\operatorname{dist}\left(T, T X_{x}\right)=\sup _{\substack{S \in \mathbb{C}^{p}-\{0\} \\ 1 \leq i \leq k, S \cdot D F(x) \neq 0}}^{\|S \cdot D F(x)\|}
$$

because $\|u\|=\|S \cdot D F(x)\|$, and $\|v\|=1$.

- So Verdier's condition W becomes:

$$
\sup _{\substack{S \in \mathbb{C}^{p} \\ 1 \leq i \leq k}}\left\|S \cdot \frac{\partial f}{\partial y_{i}}\right\| \leq C\|z\|\|S \cdot D F(x)\| \cdot
$$

- Since the functions are analytic and the inequality holds on a Z-open set of X, we can assume it holds on a neighborhood of the origin.
- consider the integral closure condition, $\frac{\partial F}{\partial y_{l}} \in \overline{m_{Y} J M(F)}$ for $1 \leq I \leq k$. Using the last corollary, we have $\frac{\partial F}{\partial y_{l}} \in \overline{m_{Y} J M(F)}$ for $1 \leq I \leq k$ if and only if

$$
\sup _{\substack{S \in \mathbb{C}^{p} \\ 1 \leq i \leq k}}\left\|S \cdot \frac{\partial f}{\partial y_{i}}\right\| \leq C \sup _{1 \leq i \leq n}\left\|z_{i} S \cdot D F(x)\right\| .
$$

- But this is easily seen to be equivalent to the previous inequality which finishes the proof.
- Let $J M_{Y}(F)$ denote the submodule of $J M(F)$ generated by $\frac{\partial F}{\partial y_{l}}, 1 \leq I \leq k, J M_{z}(F)$ the partials with respect to z.

Proposition

$J M_{Y}(F) \subset \overline{m_{Y} J M(F)}$ if and only if $J M_{Y}(F) \subset \overline{m_{Y} J M_{z}(F)}$.

- Proof: Clear that $J M_{Y}(F) \subset m_{Y} J M_{z}(F)$ implies $J M_{Y}(F) \subset m_{Y} J M(F)$.
- Let ϕ be any curve on $\mathcal{X}, 0$. Then

$$
\begin{gathered}
\phi^{*}\left(J M_{z}(F)\right) \subset \phi^{*} J M(F)=\phi^{*} J M_{z}(F)+\phi^{*} J M_{Y}(F) \\
=\phi^{*} J M_{z}(F)+m_{1} \phi^{*} J M(F) .
\end{gathered}
$$

- Then by Nakayama's lemma, $\phi^{*}\left(J M_{z}(F)\right)=\phi^{*} J M(F)$ and $\phi^{*}\left(m_{Y} J M_{z}(F)\right)=\phi^{*}\left(m_{Y} J M(F)\right)$.
- Since ϕ is arbitrary, $\overline{m_{Y} J M_{z}(F)}=\overline{m_{Y} J M(F)}$.

Families of ICIS

- For W , we compare the size of row vectors of $D F(x)$, with the part of the row vector coming from $D_{Y} F(x)$. Since the part coming from $D_{Y} F(x)$ must go to zero faster than the whole vector, it is sensible that it suffices to compare it with the part coming from $D_{z} F$. The last proposition justifies this intuition.
- Given a family of ICIS in $Y^{k} \times \mathbb{C}^{n}, J M_{z}(F) \mid \mathcal{X}(y)=J M\left(X_{y}^{d}\right)$ and this has finite colength in $\mathcal{O}_{X_{y}}^{n-d}$, so $e\left(J M\left(X_{y}^{d}, \mathcal{O}_{X_{y}}^{n-d}, 0\right)\right.$ multiplicity of $J M\left(X_{y}^{d}\right)$ in $\mathcal{O}_{X_{y}}^{n-d}$ is well defined.
- In the next sections we will see how the multiplicity can be used to give necessary and sufficient conditions for W to hold for a family of ICIS.
- Questions?

Lecture 4: Equisingularity and ICIS Part 2

by Terence Gaffney

V Multiplicities of Ideals and Modules

- The multiplicity of an ideal or module or pair of modules is one of the most important invariants we can associate to an m-primary module.
- It is intimately connected with integral closure.
- It has both a length theoretic definition and intersection theoretic definition.
- In the applications it has both an infinitesimal and topological/ geometric interpretation.

Basic Constructions for ideals and modules

- Given a submodule M of a free $\mathcal{O}_{X^{d}}$ module F of rank p, we can associate a subalgebra $\mathcal{R}(M)$ of the symmetric $\mathcal{O}_{X^{d}}$ algebra on p generators called the Rees algebra of M.
- If $\left(m_{1}, \ldots, m_{p}\right)$ is an element of M then $\sum m_{i} T_{i}$ is the corresponding element of $\mathcal{R}(M)$.
- \mathcal{M}_{n} is the terms of $\mathcal{R}(M)$ of degree n.
- $\operatorname{Projan}(\mathcal{R}(M))$, the projective analytic spectrum of $\mathcal{R}(M)$ is the closure of the projectivised row spaces of M at points where the rank of a matrix of generators of M is maximal.
- $\operatorname{Projan}(\mathcal{R}(J M(X)))$ is the conormal space of X. It consists of the tangent hyperplanes to X_{0} and the closure of this space in $X \times \mathbb{P}^{n-1}$, $X \subset \mathbb{C}^{n}$.
- Denote the projection to X^{d} by c, or by c_{M} where there is ambiguity.

Length Theoretic Definition of Multiplicity

- Denote the length of a module M by $I(M)$.

Theorem/Definition

(Buchsbaum-Rim-1963) Suppose $M \subset F, M, F$ both A-modules, F free of rank p, A a Noetherian local ring of dimension $d, F / M$ of finite length, $\mathcal{F}=A\left[T_{1}, \ldots, T_{p}\right], \mathcal{R}(M) \subset \mathcal{F}$, then $\lambda(n)=I\left(\mathcal{F}_{n} / \mathcal{M}_{n}\right)$ is eventually a polynomial $P(M, F)$ of degree $d+p-1$. Writing the leading coefficient of $P(M, F)$ as $e(M) /(d+p-1)$!, then we define $e(M)$ as the multiplicity of M.

- Example Claim: Let $M=I=\left(x^{2}, x y, y^{2}\right) \subset \mathcal{O}_{2}$. Then $e(M)=4$.
- We have $p=1, F=\mathcal{O}_{2}$, and we work with $\mathcal{F}=\mathcal{O}_{2}\left[T_{1}\right]$. (Notice that $\operatorname{Projan} \mathcal{F}=\mathbb{C}^{2}$.)
- Now $\mathcal{M}_{n}=I^{n} T^{n}=m_{2}^{2 n} T^{n}$, so

$$
I\left(\mathcal{F}_{n} / \mathcal{M}_{n}\right)=I\left(\mathcal{O}_{2} / m^{2 n}\right)=(2 n)(2 n+1) / 2=4 n^{2} / 2!+(\text { I.o.t. })
$$

- So $e(M)=4$.

Geometric meaning of multiplicity

- Suppose $I=\left(f_{1}, \ldots, f_{d}\right) \subset \mathcal{O}_{X^{d}}$, then $e(I)=\operatorname{deg} f$, where $f=\left(f_{1}, \ldots, f_{d}\right): X^{d} \rightarrow \mathbb{C}^{d}$.
- Suppose I has more than d generators; find $J=\left(f_{1}, \ldots, f_{d}\right) \subset I$ and $J=\bar{l}$, then $e(I)=\operatorname{deg} f$, where $f=\left(f_{1}, \ldots, f_{d}\right): X^{d} \rightarrow \mathbb{C}^{d}$.
- J is called a reduction of I.
- Suppose $M \subset \mathcal{O}_{X^{d}}^{p}$ has $d+p-1$ generators. Then $e(M, 0)=$ number of times we count 0 as a point where the rank of $M<p$. If M has more than $d+p-1$ generators, take a reduction with $d+p-1$ generators as before.

Example

- Example Let $[M]=\left[\begin{array}{lll}x & y & 0 \\ 0 & x & y\end{array}\right] \cdot e(M)=3, M$ has $2+2-1=3$ generators.
- Let $[M(t)]=\left[\begin{array}{ccc}x-t & y-t & 0 \\ 0 & x & y\end{array}\right]$
- Then for $t \neq 0,[M(t)]$ has rank 1 only at $(0,0),(t, 0),(t, t)$.
- So for M we should count $(0,0)$ three times when counting the number of points where the rank of $M<2$, and $e(M)$ does this.
- For a $p \times(d+p-1)$ matrix, the expected codimension of the set of points where the matrix has less than maximal rank is d.
- This explains why we use $d+p-1$ generators for the reduction.

Reductions of Modules

- Goal: Be able to show $\overline{m_{Y} J M_{z}(F)}=\overline{J M_{Y}(F)+m_{Y} J M(F)}$
- Given $M \subset F^{p}, R$ a submodule of M with $\bar{M}=\bar{R}$. Then R is called a reduction of M.
- If $M \subset N \subset F^{p}$ or h is a section of N, then h and M generate ideals on Projan $\mathcal{R}(N)$. Denote them by $\rho(h)$ and \mathcal{M}.
- If $h=\sum g_{i} n_{i},\left\{n_{i}\right\}$ a set of generators of N then in the chart in which $T_{1} \neq 0$, we have:
- $\rho(h)=\sum g_{i} T_{i} / T_{1}$.

Example

If M is the Jacobian module of X and $N=F^{p}$ then $V(\mathcal{M})$ consists of pairs (x, L) where $x \in X$ and $L \in \mathbb{P} H o m\left(\mathbb{C}^{p}, \mathbb{C}\right)$, and $L \circ D F(x)=0$. If H is the hyperplane which is the kernel of L, then the image of $D F(x)$ lies in H.

- Looking at (M, N) allows us to "strip out" one copy of N from M, as the following example shows.

Example

Let $M=I=\left(x^{2}, x y, z\right)=J\left(z^{2}-x^{2} y\right)$ and $N=J=(x, z) . M$ is the Jacobian ideal of the Whitney umbrella, and N defines the singular locus of the umbrella.

- working on $\mathbb{C}^{3}, \mathcal{R}(N)=\mathcal{O}_{3}[x S, z S]$ is isomorphic to $R=\mathcal{O}_{3}\left[T_{1}, T_{2}\right] /\left(z T_{1}-x T_{2}\right)$, by $x S \rightarrow T_{1}, z S \rightarrow T_{2}$.
- This shows $B_{J}\left(\mathbb{C}^{3}\right)=\operatorname{Projan} \mathcal{R}(N)$.
- Since $x^{2}=x \cdot x, x y=y \cdot x, z=z$ the map from $\mathcal{R}(I)$ to R has image ($x T_{1}, y T_{1}, T_{2}$):
- this induces the ideal sheaf \mathcal{I} on $\operatorname{Projan} \mathcal{R}(N)$, which is supported only at the point $(0,[1,0])$.

Reductions III

Proposition

Suppose $M \subset N \subset \mathcal{O}_{X, 0}^{p}$ are \mathcal{O}_{X}^{p} modules with matrix of generators [M], $[N]$, and $[F]$ is a matrix such that $[M]=[N][F]$. Let \mathcal{F} be the ideal sheaf induced on $\operatorname{Projan}(\mathcal{R}(N))$ by the module F with matrix of generators $[F]$. Then $\bar{M}=\bar{N}$ if and only if $V(\mathcal{F})$ is empty.

- Cf the notes in the section "Blowing up modules and Connection with Ideals II".
- Problem Find [F] if $M=\left(x^{2}, y^{2}\right), N=\left(x^{2}, y^{2}, x y\right)$, and show $V(F)$ is empty.
- $M \subset N, \mathcal{F}$ as above, then the inclusion $i: M \rightarrow N$ induces a map π_{M} from $\operatorname{Projan}(\mathcal{R}(N)) \backslash V(\mathcal{F})$ to $\operatorname{Projan}(\mathcal{R}(M))$.
- $\pi_{M}(x, p)=(x, \mathcal{F}(p))$, where $\mathcal{F}(p)$ is evaluation at p of the set of generators of \mathcal{F} which come from the columns of $[F]$.

Corollary

Suppose M and N as above, then the following are equivalent:

1. M is reduction of N.
2. $V(\mathcal{F})$ is empty.
3. The induced map π_{M} is a finite map from $\operatorname{Projan}(\mathcal{R}(N))$ to $\operatorname{Projan}(\mathcal{R}(M))$.

Proposition

Suppose $N \subset F, F$ a free $\mathcal{O}_{X, x}$ module, and suppose the fiber of $\operatorname{Projan} \mathcal{R}(N)$ over x has dimension k. Then N has a reduction M, where M is generated by $k+1$ elements.

- Proof: $\operatorname{Projan} \mathcal{R}(N) \subset X \times \mathbb{P}^{g-1}$
- Choose plane P in \mathbb{P}^{g-1} of codimension $k+1$ so the intersection of P and the fiber of $\operatorname{Projan} \mathcal{R}(N)$ over x is empty.
- Choose coordinates on \mathbb{P}^{g-1} so P given by $T_{1}=\cdots=T_{k+1}=0$
- Choosing coordinates on \mathbb{P}^{g-1} is equivalent to choosing generators on N.
- Let M be the submodule of N generated by the first $k+1$ generators of N after the new choice of generators. Then the projection onto the first $k+1$ coordinates of \mathbb{P}^{g-1}, when restricted to $\operatorname{Projan} \mathcal{R}(N)$ gives a finite map to $\operatorname{Projan} \mathcal{R}(M)$. Hence M is a reduction of N by 3).

Corollary

Suppose $N \subset F, F$ a free $\mathcal{O}_{X, x}$ module, X^{d} equidimensional, N has
generic rank e on each component of X, x, then N has a reduction with
$d+e-1$ generators.

- Proof: Generic rank of N is e, so the generic fiber dimension of $\operatorname{Projan} \mathcal{R}(N)$ is $e-1$, and $\operatorname{dimProjan} \mathcal{R}(N)=d+e-1$.
- Then $d+e-2$ is the largest the dimension of the fiber of $\operatorname{Projan} \mathcal{R}(N)$ over x can be, so N has a reduction with $(d+e-2)+1$ generators.

Exercises

- Problem Let $J M(X, 0)_{H}$ denote the submodule of $J M(X)$ generated by $\{D F(V)\}, V \in H$. Show that if H is a hyperplane, then $J M(X, 0)_{H}$ is a reduction of $J M(X, 0)$ iff H is not a limiting tangent hyperplane of X at 0 . (Hint: Show $V(\mathcal{F})$ is empty.)

Reductions, multiplicity and Cohen-Macauley Rings

Theorem

(Rees) Suppose $M \subset N$ are m primary submodules of F^{p}, and $\bar{M}=\bar{N}$.
Then $e(M)=e(N)$. Suppose further that $\mathcal{O}_{x, x}$ is equidimensional, then $e(M)=e(N)$ implies $\bar{M}=\bar{N}$.

- Proof:Kleiman-Thorup-1994.
- Remark: If $\mathcal{O}_{X^{d}, x}$ is Cohen-Macaulay, and $M \subset F^{p}$ has $d+p-1$ generators, then
- $e(M)=$ colength $M=$ colength $J(M)$, the ideal of maximal minors of M. (Buchsbaum-Rim-1963, 2.4 p.207, 4.3 and 4.5 p.223.)

Proposition

Let $X^{1}, 0 \subset \mathbb{C}^{n}, 0$ be an ICIS, defined by $f=\left(f_{1}, \ldots, f_{n-1}\right)$, where f_{i} is homogeneous of degree d_{i}. Then

$$
e(J M(X))=\left(\sum_{i=1}^{n-1}\left(d_{i}-1\right)\right)\left(\prod_{i=1}^{n-1} d_{i}\right) .
$$

Multiplicity and Lines in Space

- Proof: X consists of $\left(\prod_{i=1}^{n-1} d_{i}\right)$ lines, by Bezout's theorem.
- Choose $n-1$ columns of the matrix of partial derivatives, such that the submatrix, $[N]$ gotten has rank $n-1$ on X except at 0 . Denote the module the columns generate by N.
- Can assume N is a reduction of $J M(X)$.
- $\operatorname{det}[N]$ is homogeneous of degree $\left(\sum_{i=1}^{n-1}\left(d_{i}-1\right)\right)$, and $e(N)=$ colength of $\operatorname{det}[N]$ in \mathcal{O}_{X}, by Buchsbaum-Rim.
- colength of $\operatorname{det}[N]$ in $\mathcal{O}_{X}=\operatorname{degree}$ of $\operatorname{det}[N]$ as a map from X to \mathbb{C}, since \mathcal{O}_{x} is Cohen-Macauley.
- degree of $\operatorname{det}[N]$ on each line in X is the homogeneous degree of $\operatorname{det}[N]$
- degree of $\operatorname{det}[N]$ on X is the sum of the degrees on each component.
- SO

$$
e(J M(X))=e(N)=\left(\sum_{i=1}^{n-1}\left(d_{i}-1\right)\right)\left(\prod_{i=1}^{n-1} d_{i}\right)
$$

e(JM(X)) and the Lê-Greuel Theorem

Proposition

(Module form of the Lê-Greuel formula) Let $X^{d}, 0$ be an ICIS, $d>0, \mathrm{H}$ a hyperplane which is not a limit tangent hyperplane to X at the origin.
Then

$$
e(J M(X), 0)=\mu(X)+\mu(X \cap H) .
$$

- Recall, Lê-74 and Greuel-75 proved the following formula:

$$
\mu(X)+\mu\left(X^{\prime}\right)=\operatorname{dim}_{\mathbb{C}} \frac{\mathcal{O}_{\mathbb{C}^{n}, 0}}{l},
$$

where X is the ICIS defined by $F:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{k}, 0\right) ; F$ the map with components f_{1}, \ldots, f_{k} and X^{\prime} the ICIS defined by $F^{\prime}:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{k+1}, 0\right) ; F^{\prime}$ the map with components f_{1}, \ldots, f_{k+1}, and I is the ideal generated by f_{1}, \ldots, f_{k}, and the $k+1 \times k+1$-minors $\frac{\partial\left(f_{1}, \ldots, f_{k+1}\right)}{\partial\left(x_{1}, \ldots, x_{k+1}\right)}$.

- Proof:
- Let L be the linear form defining H. Let L be f_{k+1} in the formula.
- The right hand side of the formula becomes $\mu(X)+\mu(X \cap H)$.
- $e\left(J M(X)_{H}\right)=e(J M(X))$ since H is a hyperplane which is not a limit tangent hyperplane to X at the origin.
- the ideal of $k+1 \times k+1$ minors of a matrix of generators of $J M(X \cap H)$ is the same as the ideal of $k \times k$ minors of a matrix of generators of $J M(X)_{H}$.
- This implies that the colength of I in the formula is the colength of $k \times k$ minors of $J M(X)_{H}$, which by the Buchsbaum-Rim theorem is $e\left(J M(X)_{H}\right)$.

Calculating Milnor Numbers Inductively

Proposition

Suppose I defines an ICIS X of dimension 0; then $\mu(X)=e\left(I, \mathcal{O}_{n}\right)-1$

- Proof: I an ICIS implies $I=\left(f_{1}, \ldots, f_{n}\right)$.
- Then $e(I)=\operatorname{deg}\left(f_{1}, \ldots, f_{n}\right)$ at 0 as a map f from $\mathbb{C}^{n}, 0 \rightarrow \mathbb{C}^{n}, 0$.
- $\# f^{-1}(p)=e(I), p$ not a critical value.
- Fixing one point, as a common point for every 0 sphere, we get a bouquet of $(e(I)-1) \quad 0$-spheres. So the Milnor number is $e\left(I, \mathcal{O}_{n}\right)-1$.

Calculating Milnor Numbers: An Example

Corollary

Let X^{1} be a homogeneous ICIS, then

$$
\mu(X)=\left(\sum_{i=1}^{n-1}\left(d_{i}-1\right)\right)\left(\prod_{i=1}^{n-1} d_{i}\right)-\prod_{i=1}^{n-1} d_{i}+1
$$

- Proof $e(J M(X), 0)=\mu(X)+\mu(X \cap H)$.
- Solving for $\mu(X)$ we get

$$
\mu(X)=e(J M(X), 0)-\mu(X \cap H) .
$$

- Since X has dimension 1, $\mu(X \cap H)=m(X)-1$ by the previous proposition. Since X is a union of lines we know $\left.e(J M(X), 0)=\sum_{i=1}^{n-1}\left(d_{i}-1\right)\right) \prod_{i=1}^{n-1} d_{i}$, while $m(X)-1=\left(\prod_{i=1}^{n-1} d_{i}\right)-1$, from which the result follows.

Principle of Specialization of Integral Dependence (PSID)

- First proved by Teissier-'73 for ideals, our proof uses ideas which appear in Teissier-'80.

Theorem

G-Kleiman '99 (Principle of Specialization of Integral Dependence) Assume that X is equidimensional, and that $y \mapsto e(y)$ is constant on Y^{k}. Let h be a section of a free \mathcal{O}_{X} module E whose image in $E(y)$ is integrally dependent on the image of $M(y)$ for all y in a dense Zariski open subset of Y. Then h is integrally dependent on M.

Equisingularity of families of ICIS: Sufficiency

Theorem

Let \mathcal{X} be a family of ICIS over Y^{k} as in the basic setup. Suppose $e(m J M(X(y), 0))$ is independent of y. Then $X-Y$ is smooth, and the pair $(X-Y, Y)$ satisfies W.

- Proof: Since $e(y)$ is upper semi-continuous, there can be no points on $X(y)$ except the origin in the co-support of $m J M(X(y))$; hence $J M(X(y))$ has maximal rank except at 0 so $X(y)$ is smooth except at 0 .
- This also implies that $J M_{z}(\mathcal{X})$ has maximal rank off Y, so $X-Y$ is smooth.
- By the genericity of W , we have $\frac{\partial F}{\partial y_{l}} \in \overline{m_{Y} J M(F)}$ for $1 \leq I \leq k$ on a Z-open subset of Y. So by the PSID, we have that it holds at all points and the family is W equisingular.

Equisingularity of families of ICIS: Necessity

- Given the product $m J M(X)$, there is an expansion formula which relates $e(m J M(X))$ our infinitesimal invariant to the μ_{*} invariants, which are our topological/geometric invariants.

Theorem

Suppose $X^{d}, 0$ is an ICIS, H_{i} a generic plane of codimension i for X^{d} then

$$
\begin{aligned}
& e(m J M(X, 0))=\binom{n-1}{d} m(X, 0)+\sum_{i=0}^{d-1}\binom{n-1}{i} e\left(J M\left(X \cap H_{i}, 0\right)\right) \\
& =\binom{n-1}{d}\left(\mu_{d}(X, 0)+1\right)+\sum_{i=0}^{d-1}\binom{n-1}{i}\left(\mu_{i}(X, 0)+\mu_{i+1}(X, 0)\right)
\end{aligned}
$$

- Proof (G-'96)

Corollary

Let \mathcal{X} be a family of ICIS over Y^{k} as in the basic setup. Suppose $e(m J M(X(y), 0))$ is independent of y. Then the μ_{*} sequence of $X(y)$ is independent of y.

Equisingularity of families of ICIS: Necessity II

Proof: $\mu_{*}(X(y))$ sequence is upper semi-continuous in y, as is $e(m J M(X(y), 0))$; so, all of the terms in the sum must remain constant, if the value of the sum does.

Theorem

(Necessity) Suppose \mathcal{X} is a family of ICIS, and the pair $(\mathcal{X}-Y, Y)$
satisfies W at the origin. Then, the μ_{*} sequence of $X(y)$ is independent of y, as is $e\left(m_{y} J M(X(y))\right)$.

- Proof: Since the families of generic plane sections also satisfy W by Teissier-'81 (See also the notes for a new proof), it follows that these families are topologically trivial,
- Hence the μ_{*} sequence of $X(y)$ is independent of y. This implies $e\left(m_{y} J M(X(y))\right)$ is independent of y by the expansion formula.

