
Hint To The Exercises

1. We assume that f : Cn → C is RWH of type (q1, . . . , qn; dr). Take t ∈ R∗ and consider
the radial action as follows

f(tq1z1, . . . , t
qnzn, t

q1z1, . . . , , t
qnz1) = tdrf(z, z).

Now, take the derivatives with respect to t of both sides in above equality. Then the
identity follows by putting t = 1. For PWH mixed polynomials, the proof is similar.

2. Given a mixed polynomial germ f : (Cn, 0) → (C, 0), we may consider f = g +
√
−1h

as a real polynomial mapping germ (g, h) of 2n-variables (x1, y1, . . . , xn, yn), where
zj = xj +

√
−1yj. Then the Milnor set of f is exactly the same as the Milnor set of

(g, h). Therefore, it remains to rewrite the equation ofM(g, h) by using the coordinates
of z and z.

3. In Oka’s example, the mixed polynomial f is RWH of type (1, 1; 2). By using the
formula of mixed singularity(cf. Proposition 2.2 of Lecture 1), we have the singular
locus of f as follows,

Sing f = {z1 = 0} ∪ {z1 = ±iz1, z1 + z2 = 0}.
Let us choose the weight vector P = (1, 1), then the face function associated with P
is just f . Since Sing f ∩ C∗2 ̸= ∅, the polynomial f is not strongly non-degenerate.
In fact, there are three faces on the Newton boundary of f which correspond to the
weight vectors E1 = (1, 0), P = (1, 1) and E2 = (0, 1). By using the formula of mixed
singularity, we can easily prove the non-degeneracy condition for f .

4. Let us consider the following mixed polynomial f : C → C,
f(z, z̄) = az2 + bzz̄ + cz̄2,

where a, b, c ∈ C. Then f is strongly non-degenerate if and only if the following
inequality holds

(|a|2 − |c|2)2 > |āb− cb̄|2.
Hence this example shows the strong non-degeneracy condition for mixed polynomial
is neither dense nor connected. However, the strong non-degeneracy condition is a
semi-algebraic open condition with respect to the fixed Newton Boundary.

5. The answer is yes! For a polar weighted homogenous mixed polynomial f : Cn → C,
we can show that f is locally a surjective. In fact, we may assume there is a curve
γ ∈ Im(f) which passes through the origin.(Hint: Curve selection lemma) By using the
polar action, if c ∈ Im(f), then λc ∈ Im(f) for any λ ∈ S1. Therefore, it shows that
locally Im(f) contains a small disk Dδ centered at 0 ∈ C. The same reasoning shows
that if a ∈ C is a regular value of f(resp. f|Sn−1

ε
), then λa is a regular value for any

λ ∈ S1. Therefore f satisfies Milnor’s Condition A and B, which implies the existence
of Milnor tube fibration.

6. At first, we consider the following regular simplicial fan for the dual Newton diagram,

Σ =

{
E1 =

[
1
0

]
, P1 =

[
1
1

]
, P2 =

[
2
3

]
, P3 =

[
1
2

]
, E2 =

[
0
1

]}
.
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For instance, we take the cone σ = Cone(P2, P3). The strict transformation of the
toric modification associated with σ is

Ṽ = {(u1, u2) ∈ C∗2
σ |ū2ū

2
1 − 2u2

1u
2
2 = 0}

where (u1, u2) is the toric coordinate in C2
σ. For the next, we use the polar blowing up

to resolve the singularity. We take the polar coordinate (r1, θ1, r2, θ2). Then the strict
transformation of the polar blowing up is

V̂ = {(r1, θ1, r2, θ2)|2r2 exp(3iθ2)− exp(−4iθ1) = 0}.
Therefore r2 =

1
2
, and the exceptional divisor is Ê(σ) = {r1 = 0}. For the resolution

of singularity in the other coordinate charts, the procedure is similar. We leave the
verification to the reader.

7. Note that f is a good polar weighted homogenous mixed polynomial of polar type
(2, 1; 4). Moreover, f is convenient and strongly non-degenerate. Hence the number
of link components lkn(f−1(0), 0) is coincide with lkn∗(f−1(0), 0). By using the for-
mula(cf. Lecture 2, pp.16 and pp.20), we have lkn∗(f−1(0), 0) = 2 and the Milnor
number µ(f) = lkn∗(f−1(0), 0) + 1 = 3. Therefore by Theorem E, the zeta function of
the monodromy map is

ζ(t) = (1− t4)2(1 + t2).

8. To give a non-trivial example in the mixed case, we proposed the following mixed
Brieskorn’s polynomial

f(z, z) = za11 za21 + zb12 zb22


