Hint To The Exercises

1. We assume that $f : \mathbb{C}^n \to \mathbb{C}$ is *RWH* of type $(q_1, \ldots, q_n; d_r)$. Take $t \in \mathbb{R}^*$ and consider the radial action as follows

$$f(t^{q_1}z_1,\ldots,t^{q_n}z_n,t^{q_1}\overline{z_1},\ldots,t^{q_n}\overline{z_1})=t^{d_r}f(\mathbf{z},\overline{\mathbf{z}}).$$

Now, take the derivatives with respect to t of both sides in above equality. Then the identity follows by putting t = 1. For *PWH* mixed polynomials, the proof is similar.

- 2. Given a mixed polynomial germ $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$, we may consider $f = g + \sqrt{-1}h$ as a real polynomial mapping germ (g, h) of 2*n*-variables $(x_1, y_1, \ldots, x_n, y_n)$, where $z_j = x_j + \sqrt{-1}y_j$. Then the Milnor set of f is exactly the same as the Milnor set of (g, h). Therefore, it remains to rewrite the equation of M(g, h) by using the coordinates of \mathbf{z} and $\mathbf{\overline{z}}$.
- 3. In Oka's example, the mixed polynomial f is RWH of type (1,1;2). By using the formula of mixed singularity(cf. Proposition 2.2 of Lecture 1), we have the singular locus of f as follows,

Sing
$$f = \{z_1 = 0\} \cup \{z_1 = \pm i\overline{z}_1, z_1 + z_2 = 0\}.$$

Let us choose the weight vector P = (1, 1), then the face function associated with P is just f. Since $\operatorname{Sing} f \cap \mathbb{C}^{*2} \neq \emptyset$, the polynomial f is not strongly non-degenerate. In fact, there are three faces on the Newton boundary of f which correspond to the weight vectors $E_1 = (1, 0), P = (1, 1)$ and $E_2 = (0, 1)$. By using the formula of mixed singularity, we can easily prove the non-degeneracy condition for f.

4. Let us consider the following mixed polynomial $f : \mathbb{C} \to \mathbb{C}$,

$$f(z,\bar{z}) = az^2 + bz\bar{z} + c\bar{z}^2,$$

where $a, b, c \in \mathbb{C}$. Then f is strongly non-degenerate if and only if the following inequality holds

$$(|a|^2 - |c|^2)^2 > |\bar{a}b - c\bar{b}|^2$$

Hence this example shows the strong non-degeneracy condition for mixed polynomial is neither dense nor connected. However, the strong non-degeneracy condition is a semi-algebraic open condition with respect to the fixed Newton Boundary.

- 5. The answer is yes! For a polar weighted homogenous mixed polynomial $f : \mathbb{C}^n \to \mathbb{C}$, we can show that f is locally a surjective. In fact, we may assume there is a curve $\gamma \in \text{Im}(f)$ which passes through the origin.(Hint: Curve selection lemma) By using the polar action, if $c \in \text{Im}(f)$, then $\lambda c \in \text{Im}(f)$ for any $\lambda \in S^1$. Therefore, it shows that locally Im(f) contains a small disk D_{δ} centered at $0 \in \mathbb{C}$. The same reasoning shows that if $a \in \mathbb{C}$ is a regular value of $f(\text{resp. } f_{|S_{\varepsilon}^{n-1}})$, then λa is a regular value for any $\lambda \in S^1$. Therefore f satisfies Milnor's Condition A and B, which implies the existence of Milnor tube fibration.
- 6. At first, we consider the following regular simplicial fan for the dual Newton diagram,

$$\Sigma = \left\{ E_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, P_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, P_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, P_3 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, E_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}.$$

For instance, we take the cone $\sigma = \text{Cone}(P_2, P_3)$. The strict transformation of the toric modification associated with σ is

$$\tilde{V} = \{(u_1, u_2) \in \mathbb{C}_{\sigma}^{*2} | \bar{u}_2 \bar{u}_1^2 - 2u_1^2 u_2^2 = 0\}$$

where (u_1, u_2) is the toric coordinate in \mathbb{C}^2_{σ} . For the next, we use the polar blowing up to resolve the singularity. We take the polar coordinate $(r_1, \theta_1, r_2, \theta_2)$. Then the strict transformation of the polar blowing up is

 $\hat{V} = \{ (r_1, \theta_1, r_2, \theta_2) | 2r_2 \exp(3i\theta_2) - \exp(-4i\theta_1) = 0 \}.$

Therefore $r_2 = \frac{1}{2}$, and the exceptional divisor is $\hat{E}(\sigma) = \{r_1 = 0\}$. For the resolution of singularity in the other coordinate charts, the procedure is similar. We leave the verification to the reader.

7. Note that f is a good polar weighted homogenous mixed polynomial of polar type (2, 1; 4). Moreover, f is convenient and strongly non-degenerate. Hence the number of link components $\text{lkn}(f^{-1}(0), 0)$ is coincide with $\text{lkn}^*(f^{-1}(0), 0)$. By using the formula(cf. Lecture 2, pp.16 and pp.20), we have $\text{lkn}^*(f^{-1}(0), 0) = 2$ and the Milnor number $\mu(f) = \text{lkn}^*(f^{-1}(0), 0) + 1 = 3$. Therefore by Theorem E, the zeta function of the monodromy map is

$$\zeta(t) = (1 - t^4)^2 (1 + t^2).$$

8. To give a non-trivial example in the mixed case, we proposed the following mixed Brieskorn's polynomial

$$f(\mathbf{z},\overline{\mathbf{z}}) = z_1^{a_1}\overline{z}_1^{a_2} + z_2^{b_1}\overline{z}_2^{b_2}$$