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JAMES DAMON

1. Exercises for Blum Medial Axis for Medical Imaging

1) Let Ω ⊂ R
2 be a region with smooth boundary B. For a point y0 ∈ B. let

γ(t) denote a unit speed parametrization of a neighborhood of γ(0) = y0 in the
counterclockwise direction.

i) For u0 ∈ int(Ω), show that the distance squared function fu0
(y) = ‖y−u0‖

2

has a singular point at y0 iff y0 − u0 is orthogonal to Ty0
B (note that this

is the same as for the distance function).
ii) Let n denote the unit normal at y0 so that for t = γ′(0), (t,n) has positive

orientation, so then n points inward. We can choose coordinates so y0 is
the origin and t points along the positive x-axis, and so n points along the
positive y axis. Let κ(t) denote the signed curvature of γ(t) (so t′ = κ(t)·n).

Show that fu0
has a degenerate critical point at y0 iff ‖y0 − u0‖ = 1

κ(0) .

Thus, u0 is the center of curvature (center of the osculating circle) for γ(t)
at the point y0 (and hence is a point on the focal set of B for y0. Hence,
if u0 is not a focal point then fu0

has a nondegenerate critical point at y0
and hence defines an A1 point.

iii) If there is another point y1 ∈ B such that fu0
has a nondegenerate critical

point at y1, and (fu0
(y0))

1

2 is the minimum distance of u0 to B which only
happens at y0 and y1, then u0 is an A2

1 point of the Blum medial axis.
iv) Show that the first three derivatives of fu0

at y0 are zero iff it is a degenerate
critical point at y0 and κ′(0) = 0 (i.e. it is also a critical point for the
curvature, i.e. it is a “vertex point”).

v) in the case of iii) show that the sign of t4 in the Taylor expansion of fu0
(γ(t))

at 0 is given by −κ′′(0). If this is nonzero then fu0
(γ(t)) has an A3 singu-

larity at 0. If the osculating circle lies within Ω then u0 is an edge point of
the Blum medial axis.

vi) In the case of v), let (v1, v2) denote local coordinates around u0 with u0 the
origin. Show that Fu0

(γ(t), (v1, v2)) = ‖γ(t)− (u0 + (v1, v2)‖
2 is the versal

unfolding of the germ fu0
(γ(t)) = ‖γ(t)− u0‖

2 at 0.
(Hint: use the special coordinates from ii) and the form of the Taylor

expansion of fu0
(γ(t)) at t = 0 resulting from the previous steps.)

vii) Try to carry out the computation for a higher dimensional Ω, e.g. in R
3 so

B is then a smooth surface, using instead an appropriate Monge patch for
the surface centered at y0.
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2) For the Blum medial structure (M,U) for a generic region Ω ⊂ R
n+1 with

boundary B, the radial function satisfies the inequality

r <
1

κr i

, for all positive principal radial curvatures κr i .

Using this and the formula relating the differential geometric shape operator and
the radial shape operator show the following:

i) the formula given in the lecture relating the principal curvatures of B and
principal radial curvatures is valid and implies (using the above inequality)
that they have the same signs;

ii) From i) deduce that for R3, radial umbilic points (where the principal radial
curvatures agree) correspond to umbilic points of B.

iii) Show that the principal radial directions (eigenvectors of the radial shape
operator) correspond to the principal directions on B.

(Hint: see the proof of [Thm 3.2, D2]).

2. Exercises for Singularity Theory for Natural Images

These exercises concern the abstract mappings appearing in the classifications.
3) First we consider the models for projection mappings from a smooth surface

with local germs f : R
2, 0 → R

2, 0. These require some use of the Malgrange
Preparation Theorem.

i) Show that the fold and cusp map germs

f(x, y) = (x2, y) and g(x, y) = (x3 + yx, y)

are infinitesimally stable, i.e. their Ae-codimensions are 0.
ii) Show that the “lips-beaks” germs h(x, y) = (x3 + εy2x, y), with ε = ±1,

have Ae-codimensions 1 with (x, 0) spanning NAe ·h, i.e. a complement to
TAe · h. Thus,

H(x, y, u) = (x3 + εy2x+ ux, y, u)

is the A-versal unfolding of h(x, y).
iii) In ii) by examining the critical set and its image, determine which ε gives

the “lips” and which gives the “beaks”.

Second, we consider the germs of mappings under VA-equivalence for several
simple examples of stratifications V .

4) Let V denote the y-axis, which could represent an edge, marking curve, one
sheet of a ridge crease, or a fold shade or cast shadow curve.

i) Show that the germ f(x, y) = (y, x2 + yx) has VAe-codimension 0 and so
is infinitesimally stable for VA-equivalence.

ii) Show that the germ g(x, y) = (y, x3 + yx) has VAe-codimension 1 and
give a term spanning the complement TVAe · g and the resulting VA-versal
unfolding.

(Hint: for more details see e.g. [BG2]).
5) Let V denote the corner formed by the upper right quadrant in R

2 with
boundary consisting of the positive x and y axes.
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i) The analytic closure of the boundary consists of the union of the x and y

axes. The module of analytic vector fields tangent to this analytic set is

generated by x
∂

∂x
and y

∂

∂y
.

ii) Let ρ(x) denote the infinitely flat smooth function

ρ(x) =

{

exp(− 1
x2 ) x < 0,

0 x ≥ 0

Then, verify that ρ(x)
∂

∂y
is tangent to the strata of V ; but it is not in the

module of smooth vector fields generated by the vector fields in i).
iii) By the results of [DGH], this stratification is an example of a “special semi-

analytic stratification” so the module of smooth vector fields tangent to the
stratification V differs from the module of smooth vector fields generated

by the two vector fields x
∂

∂x
and y

∂

∂y
in i) by infinitely flat vector fields.

This form is necessary by the example in ii).
iv) Consider the fold map germ f(x, y) = (x2, y) composed with the rotation

given by the matrix

(

a b

−b a

)

with a2 + b2 = 1 to give

g(x, y) = ((ax + by)2,−bx+ ay) = (z1, z2) .

The fold critical curve of g is the line ax+ by = 0. The rotation depends
on the angle of this line, and there are two distinct cases depending whether
the line intersects the first quadrant or not and also two cases depending
on which side of the line the folding occurs. As we vary the angle, we
obtain a one parameter family of germs. Suppose the line is transverse to
both axes, so both a, b 6= 0. Show you can change coordinates in source,
preserving V , and target so that the germ is VA-equivalent to g2(x, y) =
(cx2 + y2, x+ εy), where ε = ±1 and c 6= 0 is a continuous parameter.

Hint: Begin by changing coordinates by adding z22 to z1 in the target to
remove the xy term in the first coordinate. You may then linearly change
coordinates in the source by multiplying x and y by positive constants (and
possibly by reflecting about the line x = y), as well as making further linear
changes of coordinates in the target to obtain

g2(x, y) = (cx2 + y2, x+ εy), c 6= 0, ε = ±1

Note this is the normal form for this germ given for L2V in [Chap. 6, DGH],
and see [Ta].

v) Show that for a fixed c 6= 0, g2 has VAe-codimension 2, with NVAe · g2
spanned by (x2, 0) and (x, 0). By the versal unfolding theorem, for fixed c,
a VA-versal unfolding is given by

G2(x, y, u) = ((c+ v)x2 + y2 + ux, y, u, v) .

vi) Note

G3(x, y, u) = (cx2 + y2 + ux, y, u) .

is weighted homogeneous, and it can be shown that the unfolding has finite

VA-codimension as an unfolding of g2. Hence, by a topological versality
theorem for Thom-Mather theory (see [Thm 9.10, D8a] and [Sect 4., D8b]),
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any further unfoldings by terms of “non-negative weight” i.e. weight ≥
2 in the first entry, and weight ≥ 1 in the second are topologically VA-
equivalent to the trivial unfolding of G3. Thus, G3 is a topologically VA-
versal unfolding of g2. The unfolding by G3 has the effect of moving the fold
critical line off the origin. Slightly changing the angle of the fold critical
line does not change the topological properties of the unfolding.

vii) Consequently show the topological classification of the topologically versal
unfolding is then determined by ε · sign(c). Determine the possibilities
taking into account visibility.
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